حل معادلات دیفرانسیل پخش (انتشار)وابسته زمانی از مرتبه کسری به وسیله ی روش های بدون شبکه

پایان نامه
چکیده

در این پایان نامه، دو روش بدون شبکه بندی برای حل معادله ی پخش با مشتق کسری کاپاتو نسبت به زمان ارائه شده است. در هر دو روش از تقریب تفاضل پیشرو برای گسسته کردن مشتق کسری کاپاتو استفاده می شود. در روش اول با استفاده از روش کانسا به حل معادله ی پخش کسری می پردازیم، که این روش اولین پژوهش در مورد حل این دسته از معادلات با استفاده از روش کانسا می باشد. در روش دوم بین مقادیر تابع مجهول در نقاط دلخواه و مقادیرآن در نقاط درونیابی رابطه ای را به دست می آوریم، که با استفاده از رابطه ای به دست آمده به حل معادله خواهیم پرداخت. در هر روش جواب به صورت ترکیب خطی از توابع پایه ای شعاعی در نظر گرفته می شود و با استفاده از هم محلی در نقاط مرزی و دامنه ای به حل معادله می پردازیم. در نهایت دستگاه معادلاتی حاصل خواهد شد که با به دست آوردن ضرایب مجهول در هر پله ی زمانی و جایگذاری آن ها می توان مقادیر تابع مجهول را در هر نقطه ی دلخواه و در هر گام زمانی تعیین کرد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری

در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار‏ ‎‏می‎دهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.

متن کامل

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

روش ‎( rbf ) ‎ ضمنی بدون شبکه برای معادلات پخش کسری زمانی

این پایان نامه به توسعه و بسط فرآیند بدون شبکه گسسته براساس توابع پایه شعاعی ‎$ left( rbf ight) $‎ برای شبیه سازی عددی معادلات انتشار کسری زمانی تاکید دارد. درونیابی ‎$ rbf $‎ بدون شبکه در ابتدا خلاصه سازی می شود. معادلات گسسته برای معادله انتشار کسری زمان دو بعدی ‎$ left( fde ight) $‎ با استفاده از معادلات ‎$ rbf $‎ شکل بدون شبکه و فرم های قوی ‎$ left( fde ight) $‎ زمانی بدست می آید. ثبات و...

15 صفحه اول

دیفرانسیل و انتگرال از مرتبه کسری

در این مقاله، با استفاده از تابع گاما به معرفی انتگرال و مشتق کسری یک تابع می پردازیم و در ادامه به چند کاربرد از این موضوع در چند شاخه مختلف و از جمله هندسه فرکتالی اشاره می کنیم. هدف اصلی این مقاله معرفی مراجع مناسب برای مطالعه و آشنایی هر چه بیشتر با این موضوع می باشد.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023